Almost prime solutions to diophantine systems of high rank

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine Approximation by Cubes of Primes and an Almost Prime

Let λ1, . . . , λs be non-zero with λ1/λ2 irrational and let S be the set of values attained by the form λ1x 3 1 + · · ·+ λsxs when x1 has at most 6 prime divisors and the remaining variables are prime. In the case s = 4, we establish that most real numbers are “close” to an element of S. We then prove that if s = 8, S is dense on the real line.

متن کامل

On generalisations of almost prime and weakly prime ideals

Let $R$ be a commutative ring with identity‎. ‎A proper ideal $P$ of $R$ is a $(n-1,n)$-$Phi_m$-prime ($(n-1,n)$-weakly prime) ideal if $a_1,ldots,a_nin R$‎, ‎$a_1cdots a_nin Pbackslash P^m$ ($a_1cdots a_nin Pbackslash {0}$) implies $a_1cdots a_{i-1}a_{i+1}cdots a_nin P$‎, ‎for some $iin{1,ldots,n}$; ($m,ngeq 2$)‎. ‎In this paper several results concerning $(n-1,n)$-$Phi_m$-prime and $(n-1,n)$-...

متن کامل

Positive Solutions to Some Systems of Diophantine Equations

We consider a sequence defined by the number of positive solutions to a sequence of systems of Diophantine equations. We derive some bounds on the solutions to demonstrate that the terms of the sequence are finite. We develop an algorithm for 1 computing an arbitrary term of the sequence, and consider a graph-theoretic approach to computing the same.

متن کامل

Diophantine Approximation by Cubes of Primes and an Almost Prime II

Let λ1, . . . , λ4 be non-zero with λ1/λ2 irrational and negative, and let S be the set of values attained by the form λ1x 3 1 + · · · + λ4x4 when x1 has at most 3 prime divisors and the remaining variables are prime. We prove that most real numbers are close to an element of S.

متن کامل

Irregular Diophantine m-tuples and elliptic curves of high rank

A rational Diophantine m-tuple is a set of m nonzero rationals such that the product of any two of them is one less than a perfect square. In this paper we characterize the notions of regular Diophantine quadruples and quintuples, introduced by Gibbs, by means of elliptic curves. Motivated by these characterizations, we find examples of elliptic curves over Q with torsion group Z/2Z × Z/2Z and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Number Theory

سال: 2016

ISSN: 1793-0421,1793-7310

DOI: 10.1142/s179304211750083x